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ABSTRACT

We present CarSafe, a new driver safety app for Android phones
that detects and alerts drivers to dangerous driving conditions and
behavior. It uses computer vision and machine learning algorithms
on the phone to monitor and detect whether the driver is tired or
distracted using the front-facing camera while at the same time
tracking road conditions using the rear-facing camera. Today’s
smartphones do not, however, have the capability to process video
streams from both the front and rear cameras simultaneously. In
response, CarSafe uses a context-aware algorithm that switches be-
tween the two cameras while processing the data in real-time with
the goal of minimizing missed events inside (e.g., drowsy driving)
and outside of the car (e.g., tailgating). Camera switching means
that CarSafe technically has a “blind spot” in the front or rear at any
given time. To address this, CarSafe uses other embedded sensors
on the phone (i.e., inertial sensors) to generate soft hints regard-
ing potential blind spot dangers. We present the design and imple-
mentation of CarSafe and discuss its evaluation using results from
a 12-driver field trial. Results from the CarSafe deployment are
promising – CarSafe can infer a common set of dangerous driving
behaviors and road conditions with an overall precision and recall
of 83% and 75%, respectively. CarSafe is the first dual-camera
sensing app for smartphones and represents a new disruptive tech-
nology because it provides similar advanced safety features other-
wise only found in expensive top-end cars.
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H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
Driving while being tired or distracted is dangerous. In 2010,

3,092 people were killed and 416,000 injured in the United States
alone during accidents directly attributed to distracted drivers [37].
Surprisingly, many people drive while being tired or drowsy [35]
and according to experts, many drivers fail to recognize they are
in a fatigued state. Tracking dangerous driving behavior can help
raise drivers’ awareness of their driving habits and associated risks,
thus, helping reduce careless driving and promoting safe driving
practices. Today’s top-end cars come with a wealth of new safety
features built-in. These include collision-avoidance, drowsy driver
feedback (e.g., vibrating steering wheel), lane departure warning,
lane weaving and pedestrian detection. By fitting advanced sensors
into the vehicle (e.g., night cameras, radars, ultrasonic sensors),
the car can infer dangerous driving behavior, such as drowsiness or
distracted driving; some cars even trigger automatic steering when
the car drifts into another lane or brake before getting dangerously
close to the car in front. However, only a tiny percentage of cars on
the road today have these driver alert systems; it will take a decade
for this new technology to be commonplace in most cars across the
globe. What do you do if you can’t afford a top of the line car with
advanced safety features?

We propose CarSafe, the first driver safety app that uses dual
cameras on smartphones – shown conceptually in Figure 1 and
in operation in Figure 2. CarSafe uses computer vision and ma-
chine learning algorithms on the phone to detect whether the driver
is tired or distracted using the front-facing camera while at the
same time tracking road conditions using the rear-facing camera.
CarSafe focuses on five of the most commonly occurring danger-
ous driving events: drowsy driving, inattentive driving (e.g., when
the driver is distracted and takes their eyes off the road), tailgating
(i.e., getting too close to the car in front), lane weaving or drift-
ing and ignoring blind spots during lane changes. CarSafe aims to
mimic the safety features found in many of the top-end cars on the
market today. However, the big advantage of CarSafe is that you
do not need to drive a top-end car to get these safety features – all
you need is a smartphone.

Several research projects are designing vision-based algorithms
to detect drowsiness (using fixed mounted cameras in the car) or
road conditions (using fixed or smartphone cameras [11]). These
solutions usually detect driver states or road conditions limiting
inference to either the road or driver side but not both. Today’s
smartphones do not, however, have the capability to process video
streams from both the front and rear cameras simultaneously. To
address this, CarSafe uses a context-based camera switching algo-
rithm to schedule processing between two different camera clas-
sification pipelines at the “right time”. The front camera pipeline



Figure 1: CarSafe exploits dual-camera sensing to track both driver and
road-based events.

tracks the driver’s head pose and direction as well as eyes and blink-
ing rate as a means to infer drowsiness and distraction. If it detects
drowsiness (or distraction), CarSafe alerts the driver by displaying
a coffee cup icon (or an attention icon) on the phone’s touch screen
along with an audible alert. The rear camera pipeline monitors the
distance between cars to determine if the driver is too close to the
car in front as well as tracking lane change conditions. If it detects
that the driver is too close to the car in front, a color status bar on
the touch screen changes from green to red along with an audible
alert. If CarSafe detects weaving across lanes on the road or other
distracted or dangerous behavior, it alerts the driver by displaying
an attention icon on the phone’s touch screen along with an audible
alert. The CarSafe UI shown in Figure 9 illustrates a number of
these alerts.

CarSafe represents the first dual-camera sensing app, to the best
of our knowledge, and therefore the design, insights and results
provide a road map to others intent on building dual-camera apps
in the future. The paper is structured as follows. §2 discusses the
design considerations of implementing the CarSafe app on resource
limited mobile phones that do not allow access to both cameras si-
multaneously. §3 presents the CarSafe architecture and detailed
design based on three classification pipelines; that is, car, road,
and driver classification pipelines. §4 describes the implementa-
tion details of CarSafe. This is followed in §5 by the evaluation
of the CarSafe app. Results from a 12-person user study and sys-
tem performance benchmarks are presented. The results look very
promising – CarSafe can infer dangerous driving behavior and road
conditions using context-driven camera switching with an overall
precision and recall of 83% and 75%, respectively. Using blind
spot hints and proximity information improves performance by up
to 33% in terms of the F1 score. By adding intelligence into camera
switching in comparison to a simple round robin approach boosts
the F1 score by a further 16%. §6 discusses CarSafe in relation
to related work. §7 presents some concluding remarks and future
work.

2. DESIGN CONSIDERATIONS
In this section, we discuss the technical considerations that un-

derpin the design of CarSafe while the detailed design is presented
in §3.

2.1 Dangerous Driving Events
Drivers are faced with a multitude of road hazards and an in-

creasing number of in-car distractions (e.g., music, conversation
with passengers, phone calls, instrument panels, smartphone tex-

Figure 2: CarSafe, the first dual-camera sensing app, running on a Sam-
sung Galaxy S3 mounted on the windshield of a car.

ting and browsing, etc.). CarSafe focuses on five of the most com-
monly occurring dangerous driving events [16].

Drowsy Driving (DD). Drivers who are fatigued are prone to
episodes of microsleep [34]. Individuals are often unaware of these
episodes; rather, people typically think they have been awake the
whole time or have lost focus momentarily. As a result, drivers
experiencing bouts of microsleep are at high risk of having an acci-
dent. While there has been work using static cameras [26] to infer
microsleep, there has been no work on using smartphones to infer
this with drivers. As a starting point, the smartphone’s front cam-
era should be able to monitor the prolonged and frequent blinks
indicative of microsleep. There are many challenges to classifying
microsleep including the diversity of people (e.g., glasses, facial
expressions – such as smiling) and lighting conditions (e.g., over-
exposure, shadows).

Inattentive Driving (ID). Maintaining eye contact with the road
is fundamental to safe driving. Again, by using the front camera of
the phone, the head position of the driver can be used to determine
an inattentive driving behavior when the driver is not looking at
the road ahead. There is a broader set of distracted behavior that
can also result in inattentive driving, such as, conversation with
passengers, rubbernecking, texting, browsing, people watching and
reading maps. Rather than attempting to infer specific scenarios,
we treat all of these as examples of the driver being inattentive to
the road; that is, not looking at the road ahead when the car is
moving forward.

Tailgating (TG). Drivers should maintain a safe minimum dis-
tance with the car immediately ahead to ensure they can stop safely,
if necessary. The danger level can be assessed by comparing the
current following distance to an ideal safe distance based on DMV1

guidelines (e.g.,[16]) and an estimate of the car speed. There are
a number of commercial driving applications [11, 13] that use car-
mounted smartphones and the rear camera to compute following
distance and provide feedback to the driver (see §6); these applica-
tions are closed source and therefore it is not clear how they com-
pute distances, in fact these applications often do not display the
distance but a “following time” between cars. By developing this
feature, our contribution is to offer a similar service but provide the
technical details of how this is done – in addition we integrate this
technique with a variety of others to provide more comprehensive
protection.

Lane Weaving and Drifting (LW). Lane weaving happens when
a driver performs one or more erratic lane changes. For example,
frequent lane changing is an effort to maintain a high speed and

1Department of Motor Vehicles



avoid traffic congestion. Lane drifting is the inability of the driver
to keep their vehicle within the lane markers. The CarSafe app
should be capable of recognizing these unsafe car trajectories us-
ing both the inertial sensors and the rear camera of the phone when
available. The rear camera monitors the car’s trajectory by detect-
ing and tracking lane markers. Similarly, inertial sensors observe
changes in direction and acceleration. Top-end cars come with lane
drifting and weaving detection as well as “real” blind spot monitor-
ing (i.e., the car detects if another car is in a blind spot and flashes
an icon). We aim to offer similar lane monitoring facilities using a
commodity smartphone.

Careless Lane Change (CLC). Executing lane changes safely
also requires a driver to check blind spots before proceeding. The
driver does this by looking in the side and front mirrors of the car
to check for unexpected vehicles. CarSafe should be capable of
recognizing the head position of the driver using the phone’s front
camera, allowing the app to ensure the appropriate mirror checks
are performed before each lane change. Lane changing itself can
be detected using the rear camera and inertial sensors, as described
above.

2.2 Dual Camera Processing
CarSafe fundamentally relies on the real-time processing of dual

camera video streams. In what follows, we discuss the challenges
and design considerations that arise.

Cross Stream Event Correlation. As shown in Figure 1 driv-
ing events can be independently monitored by each camera; for ex-
ample, the front-facing camera detects the driver might be entering
microsleep due to excessive long blinking; the rear-facing camera
is watching the car ahead and is on the cusp of raising a tailgating
alert. This is a likely event if a driver is entering microsleep. This
example motivates the need for the simultaneously processing of
video streams from the front and rear cameras. In addition, there
may be strong correlation between events in and outside of the car,
or causality: the driver is entering a drowsy state and because of
that tailgating occurs. In contrast, there maybe no correlation be-
tween events on opposite sides of the camera streams – such as, the
driver is attentive to the road but is driving too close to the car in
front. In this example, there is no evidence of causality. Therefore,
the app should be capable of fusing events detected from cameras
and sensor readings to infer more complex behavior.

Limited Dual Camera Access. At the time of developing CarSa-
fe, none of the mainstream smartphones provide simultaneous ac-
cess to both the front and rear cameras. As a result, dual-camera
sensing apps will be forced to switch periodically between the front
and rear cameras. Motivated by this limitation, we conduct a series
of experiments spanning a variety of high-end phone models and
various manufacturers (viz. Nokia, Samsung, HTC, Apple). Not
only did we verify that none of these platforms allow developers
dual camera access but we also find that switching between cameras
incurs a non-negligible delay. We refer to this delay as the switch-

ing delay. Table 1 presents the switching delay for the Samsung
Galaxy S3 (Android 4.2), HTC One X (Android 4.2), Nokia Lumia
900 (Windows 7.5), iPhone 4S (iOS 5), and iPhone 5 (iOS 5) plat-
forms. On average, delays across these platforms last 886 ms, with
some platforms requiring more than 2000 ms to switch. Further-
more, we find the switching delay is asymmetric, and depends on
the direction from which the switch is occurring (i.e., from the rear
camera to the front camera or vice versa). All dual camera sensing
apps must cope with the switching delay if they are to function on
off-the-shelf hardware. In this paper, we implement CarSafe using
the Android platform to investigate the challenges faced in building
a dual camera app under a mainstream platform without assistance

from specialized hardware, device drivers, or performing any OS
hacking.

To further understand the reasons for this limitation, we study
the source code of the Android Camera Architecture [3]. This
framework employs three architectural layers to abstract away the
complexity of directly manipulating camera hardware (e.g., via the
Video4Linux (V4L) library [14]): (1) the application framework,
(2) camera service, and (3) the hardware abstraction layer (HAL).
By adopting a camera service layer to mediate between the appli-
cation framework and the HAL, developers are isolated from the
hardware. As a result, developers only need to interact with a stan-
dard Java interface. In contrast, platform engineers implementing
the HAL on each smartphone require specialized hardware knowl-
edge. This causes manufacturers to be resistant to significant archi-
tectural changes in existing HAL implementations. Because ear-
lier smartphones only included a single camera, HALs are natu-
rally designed with only single-camera access in mind. For exam-
ple, the HAL for the Texas Instruments OMAP4460 chipset [17]
used by the Samsung Galaxy Nexus limits the number of simulta-
neously connected camera streams to be one (i.e., the MAX_SI-
MUL_CAMERAS_SUPPORTED constant in the CameraProper-
ties.h file is set to 1). Even though phone manufacturers have
included multiple cameras along with the necessary hardware ca-
pabilities to process simultaneous streams, hardware vendors have
yet to revise HAL implementations to expose this capability to de-
velopers. As a result, we find that if an app already has an opened
camera stream, then all additional requests from an app to open ad-
ditional camera streams (for example, through the Android Camera
Service) are blocked at the HAL with runtime exceptions returned.

Phone manufacturers are beginning to react to this artificial dual-
camera limitation [19]. For example, in April 2013 – after the
CarSafe project was complete – Samsung announced support for
dual camera access in the upcoming Samsung Galaxy S4. The
Galaxy S4 will be equipped with Samsung’s own Exynos 8-core
processor, providing the necessary computational power to process
multiple image streams at the same time. Samsung will redesign
the HAL included with the Galaxy S4 to support dual camera ac-
cess [19]. Because we design CarSafe to operate without native
dual camera support it will operate even better on smartphones that
offer zero switching delay (e.g., Galaxy S4). Furthermore, because
the application framework layer remains unchanged, even under
the S4, CarSafe will not require modifications to leverage new dual
camera capabilities. CarSafe is an example of a dual camera sens-
ing app that incorporates a unified implementation able to function
correctly on both existing phones (e.g., Samsung Galaxy Nexus and
S3) and future (e.g., Samsung Galaxy S4) dual-camera phones.

Blind Spot Processing. The fact that only one camera can be
accessed at a time and the cost of switching – that is, the switching
delay – results in blind spots and potentially missed events. Essen-
tially, a switching solution implies that a dual camera app techni-
cally will have a blind spot in the front or rear at any given time.

Table 1: Camera switching overhead, including switching directions:
front-to-rear (F-R) and rear-to-front (R-F).

❳
❳

❳
❳
❳
❳

❳
❳❳

Model
Overhead F-R

(ms)
R-F
(ms)

Face detection
(ms)

Nokia Lumia 900 804 2856.3 2032.5

Samsung Galaxy S3 519 774 301.2

HTC One X 1030 939 680.3

iPhone 4S 446 503 70.92

iPhone 5 467 529 58.48



How do we determine the best time to switch cameras (e.g., the sys-
tem is satisfied that an event is unlikely on one camera and switches
to the other)? Furthermore, if the system has to switch, can it “fill
in” in some capacity while in a blind spot? One way forward is
to explore the use of other embedded sensors that are “always-on”,
and not subject to the limitations of camera switching. For exam-
ple, CarSafe should be able to exploit inertial sensors, such as ac-
celerometers, gyroscopes and digital compasses, to figure out what
is occurring in the blind spot at any given time. In essence, CarSafe
should be able to use other embedded sensors to compensate when
the camera is looking at the wrong place. In addition, these “blind
spot hints” can be used to enable intelligent camera switching.

2.3 Real-Time Performance
Table 1 shows the per-frame processing time for the same set

of phone models described earlier. When running a representa-
tive workload (i.e., performing face detection on the phone) for
an image analyzing task on Android [10], iOS [12] and Windows
Phone [9] platforms, the processing time per frame ranges between
58 ms and 2032 ms. In comparison, the processing time is just 33
ms per frame when simply capturing frames without running any
workload. As the phone executes more complex operations, it will
require longer processing time for each frame, and therefore can
not achieve real-time processing. However, with the availability of
a multicore processor on these high-end phones, the amount of de-
lay should be able to be further reduced if we can run tasks across
multiple cores simultaneously. We will discuss how to boost the
performance of image processing pipelines later in §3.5.

3. CARSAFE DETAILED DESIGN
In this section, we present a detailed discussion of the CarSafe

architecture and algorithms, as illustrated in Figure 3. We begin
with an overview of the architecture.

3.1 Overview
The key components include (1) driver, car and road classifi-

cation pipelines; (2) dangerous driving event engine; (3) context-
driven camera switching; (4) multi-core computation planner; and,
(5) user interface.

Classification Pipelines. CarSafe comprises three sets of classi-
fiers to infer driver behavior, car events and road conditions. Each
component is designed and implemented as a classification pipeline
operating on a different set of phone sensors.

Driver Classification Pipeline. Frames from the front camera
are used to recognize (1) face direction – the turning angle, needed
to track driver attention; and, (2) eye state – open/closed events,
required for drowsiness detection.

Road Classification Pipeline. Frames from the rear camera are
used to estimate (1) the following distance; and, (2) lane trajectory
categories (i.e., lane change, and weaving).

Car Classification Pipeline. The GPS and inertial sensors are
used to (1) estimate speed, (2) detect turns and (3) recognize lane
trajectory categories. CarSafe exploits the continuous availability
of these always-on sensors to make inferences when “the camera
is looking the wrong way”; for example, inertial sensors can infer
lane weaving when the camera is “watching” the driver.

Dangerous Driving Event Engine. Recognizing dangerous
driving events requires the synthesis of the individual sensor-based
inferences from the driver, car and road classification pipelines as
overviewed above. CarSafe performs this cross stream event corre-
lation (as discussed in the §2.2) by encoding each category of dan-
gerous driving behavior listed in §2.1 as one or more rules. Rules
are developed based on best practices for safe and defensive driv-
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Figure 3: The CarSafe architecture.

ing as outlined by DMVs [16, 8], traffic safety studies [7, 34] and
through consultations with domain experts. The dangerous driving
event engine evaluates each rule against the incoming stream of in-
ferences (i.e., driver state, road conditions, and car events) made
when sensor data is sampled.

Context-driven Camera Switching. Both driver and road con-
ditions are subject to rapid and frequent changes demanding both
the front and rear cameras to be continuously monitored. Because
smartphones do not allow simultaneous access to both cameras
CarSafe incorporates an adaptive context-driven camera switching
policy. This mechanism is designed to minimize the number of
events missed. It is also responsive to blind spot hints from the car
classification pipeline.

Multi-core Computation Planner. Without carefully con-
structing and scheduling the computational workload necessary for
CarSafe, user feedback can not be reliably generated in near real-
time. As a result, for example – an alarm to alert a driver that
they are frequently entering periods of microsleep may not be de-
livered in time. The planner enables CarSafe to more fully utilize
the multi-core computational resources of the smartphone.

User Interface. Our CarSafe prototype can either be used by
a driver as a stand-alone smartphone app, or as a transparent ex-
tension to an existing in-car app – for instance, car navigation. In
all of these scenarios, the basic operation of CarSafe remains the
same; whenever a dangerous driving event is detected a visual icon
(e.g., a coffee cup indicating drowsy driving) is shown along with
an audible alert. Icons are overlaid on the host app interface, as
shown in Figure 9.

3.2 Classification Pipelines
We begin by describing the design of the three sensor-based clas-

sifiers used by CarSafe to track the state of the driver, road and car,
respectively.

3.2.1 Driver Classification Pipeline

The driver classification pipeline, shown in Figure 4, comprises
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two components: (1) face direction classification, and (2) eye state
classification.

Face Direction Classification. Inferring the direction of the
driver’s face is divided into two steps: (1) detection classification
and (2) direction classification.

Detection Classification. Images from the front camera are
scanned to find the relative position of the driver’s face. The scan-
ning procedure is an iterative process. At each iteration a selected
region of the overall image is provided to a classifier that deter-
mines if a face is present, and if so the face direction is classified.
Initially, the size of the region is set to 200 x 200 pixels. If no face is
found, the region is made smaller with the process terminated once
a minimum region size is reached (70 x 70 pixels in the CarSafe
prototype).

Direction Classification. To classify the direction of the driver’s
face we use two steps: (1) Haar-like features [41] that are extracted
from image regions provided by the detection stage, after which
(2) inference is performed using an Adaboost decision-stump clas-
sifier [33]. Haar-like features highlight differences between object
classes (in this case faces) by aggregating pixel intensities for rect-
angular regions. We adopt this classifier design (i.e., combination
of feature and model type) because it has been demonstrated to be
effective in recognizing a variety of object types, including faces.
The classifier is a cascade of decision-stumps (i.e., two-level de-
cision trees). We train this model to recognize four face related
categories that include: (1) no face is present; or the driver’s face is
either (2) facing forwards (defined as facing.forwards events), to-
wards the road; (3) facing to the left, defined as facing.left events
(i.e., a ≥ 15

○ rotation relative to facing directly forward); and, (4)
facing to the right, defined as facing.right events (another ≥ 15

○

rotation but this time to the right).
Eye State Classification. The classification of driver’s eye

states (i.e., open and closed states) requires two steps: (1) detec-
tion and center estimation and (2) state classification. This stage is
only performed if the driver’s head is recognized as facing the road
during face direction classification.

Detection and Center Estimation. This process is initialized
by receiving the pixel co-ordinates of a region within the image
that includes only the face of the driver from the face direction
classifier. Similarly, two even smaller regions that enclose the eyes
are searched for by exploiting a commonly used active shape model
(available from [1]). This model uses 76 MUCT2 pre-defined visual
landmarks [21] that are fit to the image to estimate an eye bounding
region. To find the eye center we calculate the vector field of image
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gradients with respect to the pixel intensities. By summing up the
inner products of image gradients over each point within the iris,
the eye center can be detected by finding the largest value.

State Classification. Eye classification is a two stage process
comprising: (1) the extraction of SURF3 features [25], followed
by (2) inference using an SVM4 classifier [28]. We compute 64-
component SURF features to represent the two states (viz. open
and closed) of the eye. Extracting features requires knowledge of
the eye position and the pixel co-ordinates of the eye center, both
of which are determined in the prior stage of the pipeline. SURF
features are provided to a binary two-class SVM that is trained to
classify eyes as either being open or closed (defined as an open or
closed event). We train the SVM using the BioID face database [5].
Due to a limited number of examples of closed eyes in this database
we recruit 30 volunteers to provide supplementary training data. In
total our training set contains 160 open eye images and 160 closed
eye images.

3.2.2 Road Classification Pipeline

As illustrated in Figure 5, the road classification pipeline com-
prises two components: (1) following distance estimation and (2)
lane trajectory classification.

Following Distance Estimation. CarSafe estimates the fol-
lowing distance using a two stage process that begins with (1) the
detection of the car immediately ahead, after which (2) the distance
between the cars is estimated.

Car Detection. The recognition of a car within an image is
essentially an identical process to the one performed by the face di-
rection classifier; the iterative scanning process performed to detect
cars is the same, as is the design of our car classifier (i.e., choice
of features and classification model). In our prior work, Walk-
Safe [43], we verified this particular detector design is effective in
recognizing cars. To train this classifier we use a labeled dataset
where: positive examples (i.e., images containing cars captured
from the rear) are sourced from the MIT CBCL5 car dataset [38],
and negative examples (i.e., images of cars taken at different angles
along with various images containing road and urban settings) are
collected from Google StreetView [20].

Distance Estimation. By applying a pin-hole camera projection
we can estimate the following distance based on the pixel distance
captured by the rear-camera image, such as Figure 6(a). To perform
this projection requires the pixel co-ordinates within the image of

3Speeded Up Robust Features
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5Center for Biological & Computational Learning
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(1) the car ahead and (2) the driver’s car. The first co-ordinate pair
(the car ahead) is provided by the previously described car detec-
tion stage; the second pair is detected with a simple threshold-based
edge detector that identifies the front edge of the driver’s car visible
at the bottom of each image.

Figure 6(c) shows the pin-hole camera projection we perform.
This figure illustrates how any road distance Z (e.g., Z1 and Z2) in
the camera view is projected to an image pixel distance d (e.g., d1
and d2). As a result, the following distance can be computed by,

Z2 −Z1 = ( 1
d2
− 1

d1
) × f ×H (1)

where Z1 and Z2 are the real-world distances between the smart-
phone and the front of the driver’s car and the car immediately
ahead respectively; d1 and d2 are the in-image pixel distance equiv-
alents of Z1 and Z2; f is the rear-camera focal length; and finally,
H is the smartphone mounting height.

Lane Trajectory Classification. This is a two stage process
in which (1) lane markings are detected and tracked across mul-
tiple frames, after which (2) a classifier determines the trajectory
category.

Lane Marker Detection. Detection of lane markers is performed
in three stages: (1) perspective transformation, (2) vertical-edge
detection, and (3) line detection. First, the perspective of each rear-
camera image is transformed into a “bird’s-eye view” by applying
inverse perspective mapping [24]. The effect of the transformation
can be seen by comparing Figure 6(a) and Figure 6(b). Second,
possible lane marker edges are identified by a pixel-based search of
the region of road immediately in front of the driver’s car. For each
pixel we compare it’s gray-scale pixel value (g(x, y)) with that of
pixels (g(x −m,y) and g(x +m,y)) horizontally adjacent, where
x and y are pixel co-ordinates and m is the lane marker width. As a
result of this pixel search, we generate an edge-map in which pixels
of potential lane markers are set as white and the remaining pixels
as black. Third, we apply a Hough-line transformation [32] to the
edge-map that will identify line segments and select lane markers.
The Hough-line transformation we use first applies a Canny edge
detector [29] before voting on line candidates using the RANdom
SAmple Consensus (RANSAC) algorithm [32].

Trajectory Classification. Lane trajectory categories (including
lane change (defined as lane.change events), and lane weaving (de-
fined as lane.weaving events)) are distinguished by statistics that
track lane marker crossing events. Crossing events are defined as
when the intersection of the detected lane marker and the lower
edge of the smartphone screen pass by the vertical center line of a

frame. A decision tree [27] is trained based on (1) the duration and
(2) the frequency of crossing events. We train the classifier using
images collected during controlled driving maneuvers (see §5.1).

3.2.3 Car Classification Pipeline

Figure 7 shows the three components of the car classification
pipeline: (1) speed estimation, (2) turn detection, and (3) lane tra-
jectory classification.

Speed Estimation. Estimates of the vehicle’s speed are based
on time-series GPS positions. We first project the geodetic co-
ordinates from the GPS (i.e., latitude and longitude) into a cartesian
co-ordinate system. Speed is then estimated by dividing the sum of
the distances between pairs of successive co-ordinates spanning a
sliding window of five seconds.

Turn Detection. Similar to speed estimation, car turns are
detected by observing significant changes in direction from time-
series GPS positions. Again, GPS positions are first converted into
cartesian co-ordinates after which vectors are formed from succes-
sive co-ordinates. Turns are detected by examining the change in
angle between successive vectors within a sliding window of 10
seconds. A vehicle turn is inferred if the average change in angle
exceeds a threshold, set to ≈ 50○ in our experiments. The relative
direction of the turn (i.e., left- or right-hand turn) is based on the
polar coordinates of the average vector change. If the change in an-
gle is positive the turn is to the right (defined as turn.right events)
otherwise the turn is to the left (defined as turn.left events).

Trajectory Classification. This classifier recognizes the same
set of classes as the road classification pipeline; however, it uses a
completely different set of sensors – inertial sensor readings rather
than the rear camera.

From three inertial sensors – the accelerometer, gyroscope and
compass – a series of features are extracted that capture distinctive
characteristics of the car trajectory as it moves within and between

turn
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Figure 7: Data flow of the car classification pipeline.



the road lanes. We adopt a feature set and extraction algorithms
previously developed in our own prior work [36]. Specifically, we
use three time-domain features (mean, variance and mean-crossing
rate) and five frequency-domain features (peak frequency, spec-
tral entropy, spectrum sub-band energy, sub-band energy ratio, and
spectrum correlation). These eight features are extracted for each
sensor resulting in a 75-element feature vector. Prior experiments
[36] have proven such features are effective in classifying physical
activities (e.g., walking, running, standing) that have distinct time-
series patterns within inertial sensor data – we now apply this same
feature set to classifying car trajectories. In addition, the extraction
algorithms used from [36] are robust to the precise position and
orientation of the phone within the car.

Classification is performed using a binary bayesian classifier that
represents classes as a multi-variate gaussian [27]. Two classes of
trajectories are recognized – one “lane change/weaving” class for
both types of lane trajectories (viz. lane change and weaving) and
one “other” class that represents all other trajectories where the car
largely remains in the same lane. Each feature vector is computed
using a sliding window of 1.5 seconds of raw data (≈ 128 raw data
segments). Classification is performed over each input feature vec-
tor to recognize the current lane trajectory as being either the “lane
change/weaving” or “other” class. To train the classifier, we use
the driving data (see §5.1 for details) and manually label each data
segment. Inferences (e.g., blind spot hints) can be use as input to
context-driven camera switching.

3.3 Dangerous Driving Event Engine
CarSafe recognizes five types of dangerous driving events (de-

tailed in §2.1). For each type, we describe the series of rules used
to interpret the low-level state inferred by the classifiers described
in §3.2 that allow dangerous events to be detected.

Drowsy Driving (DD). We adopt a standard metric for mea-
suring alertness, PERcentage of CLOSure of the eyelid – called
PERCLOS [44], which more formally represents the proportion
of time within one minute that eyes are at least 80% closed [34].
This driver state information is provided by the driver classifica-
tion pipeline detailed in §3.2.1. CarSafe continuously computes
PERCLOS and declares the driver “drowsy” if PERCLOS exceeds
a threshold (28%) guided by prior studies [44].

Inattentive Driving (ID). Two types of inattentive driving are
monitored by CarSafe. In the first case, the output of the face direc-
tion classifier is tracked. If the driver’s face is not facing forward
for longer than three seconds while the car is moving forward (i.e.,
while a positive speed is reported by the car classification pipeline)
and not turning as reported by the turn detector (also reported by car
classification pipeline) then a dangerous driving event is inferred.
We use a three second threshold based on the guidelines provided
by [7]. In the second case, we monitor the turn detector. Each time
a turn is detected the historical output of the face direction classifier
is checked. If there is no a head turn corresponding to a car turn-
ing event then the driver did not check that the road is clear before
turning – as a result, a dangerous event is inferred.

Tailgating (TG). We adopt the calculation for a minimum fol-
lowing distance from [16], which relies on the speed estimation
made by the car classification pipeline. This estimate of a “safe
following distance” is compared to the estimated current following
distance also provided by the car classification pipeline. If CarSafe
determines the safe following distance is not respected for a period
longer than three seconds a dangerous driving event is inferred.

Lane Weaving and Drifting (LW). Detecting lane weaving or
drifting relies on the trajectory classifier contained within the road
classification pipeline. CarSafe reports a dangerous driving event

Algorithm 1: Context-driven Camera Switching

Input: Bmin, Fmin, Badd, and Fadd

Output: Estimated time Tf or Tb

Connecting to the front camera initially (CurCamera =
Front);
while TRUE do

Waiting for the next frame from the CurCamera;
Processing the received frame;
if Close to a lane marker && CurCamera == Rear

then

switchT ime = currentT ime + 2 sec;

if ((Received a blind spot hint) && CurCamera ==

Front) ∣∣ (switchTime ≥ currentTime) then

if CurCamera == Front then

CurCamera = Rear;
Estimate Tb based on Eq. 2;
switchT ime = currentT ime + T f

s + Tb;

else

CurCamera = Front;
Estimate Tf based on Eq. 3;
switchT ime = currentT ime + T b

s + Tf ;

Switch to the other camera;

if the classifier infers either lane weaving or lane drifting contin-
uously for longer than two seconds, which would be significantly
longer than the typical duration of a lane change maneuver [39].

Careless Lane Change (CLC). Each time the trajectory clas-
sifier associated with the road classification pipeline determines a
lane change event has occurred the recent inferences made by face
direction classification are examined. If there is no head turn corre-
sponding to a lane change event (occurring within ǫ seconds prior
to the lane change event detection) then a dangerous driving event
is inferred. We set ǫ to three seconds based on the road safety find-
ings provided in [31].

3.4 Context-driven Camera Switching
In what follows, we present the design of our context-driven

camera switching.
Switching Algorithm. We provide the intuition that underpins

the design of our camera switching mechanism; a formal descrip-
tion is provided in Algorithm 1.

Primarily, the switching between the front and rear cameras is
regulated by two time intervals (i.e., T f

e , and T b
e ). Each interval is

associated with one of the two cameras. Once the time interval for
a particular camera expires CarSafe switches to the other camera.
The pair of time intervals are set by an event arrival prediction pro-
cess, which seeks to dynamically adjust the time allocated to each
camera based on the current driver, road or car conditions. For ex-
ample, if the system determines that the driver is likely to enter a
dangerously drowsy state more time is allocated to the front camera
to monitor this situation closely. Figure 8 presents an example of
the common case operation of the camera switching mechanism.

Scheduled camera switching based on a pair of timers is supple-
mented with temporary pre-emption of the switching plan driven
by discrete events – we refer to this behavior as the pre-emption of
the switching plan. For example, if the driver starts to drive close
to the lane markers then a planned switch to the front camera can
be delayed to allow further monitoring of the lane marker situation.

Event Arrival Prediction. We use two separate predictors that
target two event types: (1) front-camera events, which focus on



driver states; and (2) rear-camera events, which focus on car events
and road conditions.

Front-Camera Events. The driver state event with the shortest
time-scale is driver drowsiness (i.e., blink duration). We find for
this reason the prediction of other driver state events are not needed
and instead we focus on predicting driver drowsiness only. We
again use PERCLOS to quantify drowsiness; the likelihood that a
driver is drowsy increases inline with increases in PERCLOS. As a
result, the time allocated to the rear camera is proportional to the
most recent PERCLOS. More formally,

T
f
e =
⎧⎪⎪⎨⎪⎪⎩
Badd ⋅ (DTH−PERCLOS

DTH

) +Bmin, if PERCLOS <DTH

Bmin, otherwise
(2)

where DTH is the threshold for PERCLOS, that determines if the
driver is in a drowsy state; Badd is a scaler that regulates the re-
lationship between PERCLOS and T f

e ; finally, Bmin sets a floor
for the prediction of T f

e – to cope with the switching delay be-
tween cameras, Bmin must be be greater than the switching delay
(Tf

s + Tb
s).

Rear-Camera Events. Similar to the design of front camera
event prediction, rear camera events also focus on a single key event
type; that is, the following distance between cars. When the follow-
ing distance is decreasing, we predict when this distance will be
equal to – or smaller than – the minimum safe following distance
(detailed in §3.3). In cases where the following distance is con-
stant or increasing we enforce a maximum time between expected
events. More formally,

T
r
e = {Fadd + Fmin, if D−Ds

V
> (Fadd + Fmin)

max(D−Ds

V
, Fmin}, otherwise

(3)

where Ds is the minimum safe following distance; D is the cur-
rent following distance, as estimated by CarSafe; Fadd controls
the varying range of Tr

e – to limit the maximum value of Tr
e when

CarSafe detects no front cars and Fmin sets a floor for the predic-
tion of Tr

e. Similarly, Fmin should be set greater than the switching
delay (Tf

s + Tb
s).

Switching Plan Pre-emption. Planned switching events can be
pre-empted by hints from sensors or current car context. We now
describe two examples of pre-emption due to (1) proximity to lane
markers and (2) expected trajectory changes based on sensor data
observations.

Lane Proximity. When the car is close to lane markers a lane

Event (e)

Front-facing camera 

Rear-facing camera 

Estimating Tb

Event occurrence

Te

Figure 8: Context-driven Camera Switching algorithm in action. Here, an
event (e) is monitored with the rear-facing camera. Although
switching occurs roughly at the same time the event begins it is

only monitored once the switching delay overhead (T
f
s ) has past.

event (e.g., lane change) is more likely to occur. As a result, we
introduce the following camera switching pre-emption heuristic. If
the car is closer than 0.6 meters from the nearest lane marker then
any planned camera switching is delayed (≈ 2.0 seconds), allowing
an immediately occurring lane event to be captured.

Lane Trajectory – Blind Spot Hints. If lane trajectory changes
happen while the front camera is active (rather than the rear cam-
era), an event, such as a lane change or weaving, can go unob-
served (i.e., missed events). As a result, we incorporate another
pre-emption heuristic based on blind spot hints from the always-on
inertial sensors, as discussed in §3.2.3. If the trajectory classifier
(which uses blind spot hints) determines that changes in the car
trajectory occur then the rear camera is immediately activated. By
switching to the rear camera the road classification pipeline can
immediately verify the car trajectory inference, after which camera
switching returns to the timer based policy.

3.5 Multi-core Computation Planner
We determined experimentally in §2.3 that processing dual im-

age streams from the front and rear cameras can overwhelm the
smartphone’s computational resources. To maintain near real-time
user feedback CarSafe relies on a computational planner, which
aims to effectively leverage the multi-core architecture of new smart-
phones to perform classification, as discussed in §3.2. The multi-
core computation planner is comprised of three components: (1)
dispatcher, (2) queue manager, and (3) de-multiplexer.

Dispatcher. A pool of threads is maintained by dispatcher.
Each thread contains one single classifier, of the three described
in §3.2. The dispatcher allocates new camera frames or other data
to unused threads. Because frames do not have dependencies with
other frames being processed, the allocation of data to threads is
greatly simplified. For example, multiple threads each running the
same road classification pipeline can operate on different captured
image frames.

Queue Manager. The dispatcher may find no available threads
when new data arrives to be processed. In such cases this data is
placed in a queue to wait until a thread becomes available. When
a thread does become available the most recent data (e.g., image
frame) is used rather than the data that has been in the queue the
longest. This allows the most recent data to always be processed
as soon as possible. Any frames waiting that are older than the one
selected are dropped from the queue and go unprocessed.

De-multiplexer. The processing time for frames is variable,
even for identical classifiers. As a result, it is possible for the out-
put of frame processing to arrive out of order. In other words, a new
frame may be completed before an older frame even though the new
frame may have started processing later than the older frame. To
cope with this problem each frame is timestamped with the time
when processing began. Upon computation being completed the
results of multiple frames can be re-ordered based on these times-
tamps.

3.6 User Interface
Figure 9 illustrates CarSafe integrated into OsmAnd [18], an

open-source car navigation application. The user interface over-
lays simple icons to the map screen that correspond to particular
dangerous driving events. A different method is used for the fol-
lowing distance alert. A small rectangular border is placed around
the conventional GUI. This frame changes color based on the fol-
lowing distance; that is, green for safe and red for unsafe.

CarSafe can also operate independently as a stand-alone applica-
tion. The same GUI events and icons are displayed along with con-
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Figure 9: The example UI screenshot of CarSafe which indicates drowsy
driving and tailgating conditions. The red rectangle at the bottom
edge of the screen indicates the tailgating condition. The top row
shows four icons representing for the rest of dangerous driving
conditions.

tinually updating driver safety statistics (e.g., total time the driver
has been inattentive of the road).

4. CARSAFE IMPLEMENTATION
We implement CarSafe on the multi-core Galaxy S3 Android

phone. The driver, road and car classification pipelines, which rep-
resent the most computationally demanding modules, are written in
C and C++ based on the OpenCV libraries and interfaced with Java
using JNI wrappers. Other CafeSafe architectural components (viz.
dangerous driving event engine, context-driven camera switching,
and multi-core computation planner) are implemented using pure
Java. To validate the prototype, we integrate the CarSafe modules
with the OsmAnd navigation app. Because of privacy concerns,
only Android programs running in the foreground can capture im-
ages from a camera through an Android image preview surface
(e.g., SurfaceView). However, by overlaying an “invisible” dedi-
cated drawing surface (shrinking it an extremely small size) on top
of the original view hierarchy of OsmAnd, CarSafe modules can be
easily embedded into, and seamlessly work with, OsmAnd without
modifying the original navigation UI (e.g., the navigation map in
Figure 9). The embedded drawing surface can receive preview im-
ages from either the front or rear camera at a rate of 30 fps. To
boost the frame processing performance, we first set the resolution
of preview images to 320 x 240 pixels. Because CarSafe classifica-
tion pipelines represent computationally demanding models, single
core phones have difficulty processing frames in real-time. To gain
better performance we exploit new multi-core phones and target
our first implementation to the Samsung Galaxy S3 with a 1.4 GHz
quad-core Cortex-A9 CPU. We replicate the complete processing
pipelines for the three classification pipelines (viz. driver, road and
car classifiers) across four parallel threads on multiple CPU cores.
When CarSafe is fully operational, the CPU usage is 64% for the
Samsung Galaxy S3 (four CPU cores). While this represents a high
continuous load on the phone, we argue that increased cores and
advances in the development of more efficient computer vision and
machine learning algorithms will allow the CarSafe pipelines to run

at higher frame rates while riding the technology curve of more and
more cores.

5. EVALUATION
In this section, we evaluate CarSafe under real-world conditions

where people use the application in the wild. Specifically, we dis-
cuss results from a user study where participants use CarSafe while
commuting around the Hanover (New Hampshire, USA) area. In
addition, we present results from a set of system performance bench-
marks. Our findings include: (1) CarSafe can detect a range of
dangerous driving conditions with acceptable levels of accuracy;
(2) CarSafe’s classification pipelines cope with a majority of ev-
eryday road conditions; (3) context-based camera switching is ef-
fective, and allows CarSafe to operate on existing phones given that
today’s phones do not allow simultaneous access to both cameras;
and, (4) the multi-core computation planner improves system uti-
lization when supporting the CarSafe workload, enabling higher
frame rate throughput.

5.1 Datasets
Collecting datasets to adequately evaluate CarSafe is challeng-

ing. This is because dangerous driving events are not guaranteed
to happen during everyday driving for small scale trials of the app.
In contrast, car manufacturers go to great lengths to ensure that
there is a strong likelihood of observing dangerous driving events
when evaluating new car safety technologies. For example, sci-
entists working for Mercedes-Benz [15] evaluating safety features
(e.g., weaving, drowsy driving) use specialized cars with dual steer-
ing wheels where participants of these drowsy driving studies are
physically tired prior to the start of the experiment or simulation,
hence increasing the probability of dangerous driving events oc-
curring. Such an approach is beyond our means. As mentioned,
only collecting data from normal/routine driving experiences is not
viable on its own, simply because we can not accumulate enough
examples of poor or dangerous driving to fully evaluate CarSafe.
Furthermore, it would be irresponsible to run an experiment that
promoted dangerous behavior without taking the sort of measures
that the car manufacturers take.

For these reasons, we evaluate CarSafe using two distinct exper-
iments and datasets: that is (1) controlled car maneuvers, where
we safely “stage” dangerous driving events under controlled condi-
tions using six study participants (6 males) – each driver is accom-
panied by a “co-pilot” who orchestrates the controlled maneuvers
only when external conditions on the road and around the car are
safe (e.g., where the co-pilot instructs the driver to weave when no
other cars are on the road); and (2) normal daily driving, which
only contains data collected during drivers’ (using six study par-
ticipants - 5 males and 1 female) everyday driving routines (e.g.,
commuting to and from work, going to the stores, etc.) without any
controlled maneuvers or participation of a co-pilot. Note, that while
participants in the controlled car maneuvers experiments all con-
duct the same set of controlled maneuvers they also conduct their
normal driving between controlled maneuvers. We argue that this
combination of experiments provide the necessary driving events
required to evaluate CarSafe while minimizing the risks to partici-
pants.

We recruit a total of 12 participants (11 males and 1 female)
with ages ranging from 23 to 53 years to collect their driving data
under controlled car maneuvers and normal daily driving condi-
tions. There are 6 participants in each of the study groups – 6 in the
controlled car maneuvers group and 6 in the normal daily driving
group. Participants are comprised of undergraduates, graduates,
postdoctoral researchers, and faculty members of Computer Sci-
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Figure 10: Routes for the controlled car maneuvers dataset.

ence, Dartmouth College. A wide variety of different cars are used
in the study including but not limited to: Dodge Stratus, Volkswa-
gen Tiguan, Honda Civic, Subaru Forester, Subaru Outback, Nis-
san Camry, Volvo 850 and Mazda Familia. Both datasets combine
to provide 300 minutes of driving data and include a total of 164
dangerous driving events. Under normal daily driving conditions,
participants tend to drive their cars carefully, and therefore perform
few dangerous driving events. Among these events, 121 danger-
ous driving events come from the controlled dataset and 43 events
come from the normal daily driving dataset. The most common
dangerous driving event found in the normal daily driving dataset
is tailgating, where 22 tailgating events are detected.

Controlled Car Maneuvers Dataset. We recruit six partici-
pants to perform the role of drivers during our controlled experi-
ments. All maneuvers are staged in one of three pre-defined routes
(see Figure 10) selected for their lack of traffic. We use the par-
ticipant’s own vehicle during experiments, which is instrumented
with three smartphones – one runs CarSafe, and two others cap-
ture frames from either the front or rear camera as well as capture
sensor data (i.e., GPS, accelerometer, compass, gyroscope). After
the experiments are completed we manually label dangerous driv-
ing events by replaying recorded video and segmenting the sensor
and video streams as required. The labeling of such video is labo-
rious, it requires multiple passes by different researchers to verify
the ground-truth driving events are correct. Subjects repeat each of
the following four maneuvers four times.

Scenario #1 (Careless lane change). Participants perform lane
changes without checking their blind spots (i.e., not turning their
heads to check the lane is clear). This scenario is performed along
route 1 shown in Figure 10(a).

Scenario #2 (Tailgating). Participants drive along route 3 (shown
in Figure 10(b)) behind another car driven by a researcher involved
in the CarSafe project. The subject then periodically drives close to
the car in front.

Scenario #3 (Driving while drowsy and lane weaving). Par-
ticipants follow route 3, as shown in Figure 10(b). During the first
half of the route, we ask drivers to periodically blink for an increas-
ing period of time between 1 and 5 seconds, emulating microsleep.
The other maneuver requires the drivers to weave between lanes
erratically during the second part of the route.

Scenario #4 (Inattentive driving). While following route 2
(shown Figure 10(a)) participants are asked to periodically look
away from the road while driving, as well as during left and right
stationary turns.

Daily Driving Dataset. Six participants (5 males, 1 female)
who drive daily are recruited to provide completely natural driv-
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Figure 11: The F1 scores of the drowsy driving detection using different
detection window sizes.

ing data that occurs as part of their everyday routine. Typically,
most data comes from the subject’s daily commute between home
and work. We instrument the participants’ cars just as we did for
the prior dataset; that is, three smartphones are installed in each
car, one running CarSafe and two others constantly capturing data;
specifically, from the front- and rear-facing cameras. All videos
from the front- and rear-facing cameras are manually labeled with
ground-truth events which include all driving maneuvers, both nor-
mal and dangerous.

5.2 Overall CarSafe Accuracy
The key metric in CarSafe performance is its ability to detect in-

stances of dangerous driving under real-world conditions. Table 2
provides the precision (PR) and recall (RC) results across all tested
dangerous driving scenarios – including both controlled and nor-
mal daily driving groups. We find the mean precision and recall for
all scenarios are 83% and 75%, respectively. Among these danger-
ous conditions, the cases related to detecting drowsy driving have a
lower precision of 60%. To understand the cause of these particular
false positive cases, we first analyze how the detection window size
impacts the accuracy of the drowsy driving detection as follows.

Window Size Tuning – Drowsy Driving Detection. To de-
termine the optimal value of the detection window size (described
in §3.3), we develop a computer based simulator that includes the
same CarSafe implementation that runs on Android smartphones
(due to the portability of Java and by cross-compiling C++). We
replay, through the simulator, the continuous image streams from
the raw front- and rear-facing cameras captured during our experi-
ments described earlier, along with all collected sensor data. As a
result our simulator can test any possible switching behavior.

Table 2: The overall accuracy for detecting dangerous driving conditions.
The columns provide: true positives (TPs), false positives (FPs),
ground truth (GT), precision (PR), and recall (RC).

Condition
# of
TPs

# of
FPs

# of
GT

PR RC

Drowsy driving (DD) 18 12 25 0.60 0.72

Tailgating (TG) 62 8 78 0.89 0.79

Careless lane change
(CLC)

12 2 14 0.86 0.86

Lane weaving (LW) 16 0 22 1.00 0.72

Inattentive driving (ID) 16 4 25 0.80 0.64

Overall - - 164 0.83 0.75



Figure 11 shows the F1 score6 for drowsy driving detection when
the window size is set to 1, 2, and 3 minutes. Before analyzing
these window sizes, we run a pilot study to determine empirical
thresholds of PERCLOS as 0.28, 0.31, 0.42 for detecting drowsy
driving conditions using 1, 2, and 3 minute windows, respectively.
Then, the F1 scores of different window sizes are obtained by run-
ning collected data using the simulator. We set the window size as 1
minute and the threshold for detecting drowsy driving conditions as
0.28, which results in a higher number of false positives. To further
confirm the cause of these false positive cases, we manually ana-
lyze each false positive case and find that this is the result of poor
lighting conditions (e.g., a shadowed or bleached out face) and fa-
cial expressions (e.g., smiling, squinting) that confuse the classifier,
which are challenging scenarios for many vision-based algorithms.
If we exclude these cases precision increases to 75%.

5.3 Driver, Road, and Car Classification Pipe-
line Benchmarks

We now evaluate each of the three classifiers responsible for
monitoring driver, road and car states.

Driver Classification Pipeline. Table 3 reports the precision
and recall for face direction events (i.e., facing.right (FR) and fac-

ing.left (FL)). We find for FR precision is 68% and recall is 68%;
similarly, for FL the precision and recall are 79% and 88%, re-
spectively. After studying these errors we identified two primary
causes: (1) event loss (i.e., missing events) due to camera switch-
ing (39%); and, (2) “shallow face turnings”, which are difficult to
detect (17%). Errors in these face-based events (i.e., FR and FL)
can also propagate to the process of recognizing driver inattention
(i.e., ID) because these inferences are inputs used to detect this
particular dangerous driving event. We find 71% of false negatives
that occur when detecting driver inattention are due to errors in face
direction inference. This is much larger than the fraction of false
negatives caused by camera switching (14%) or due to failing to
detect a car turn (14%). However, 66% of false positives (also for
driver inattention) are due to undetected car turn events (discussed
later) with the remainder caused by camera switching (33%).

As part of future work, we plan to incorporate other information
(e.g., detecting the relative locations of the eyes in the detected face
region) to filter out false positives when detecting face direction
events.

To test the accuracy of eye state recognition within the driver
classification pipeline we use a test dataset of front-camera frames.
This dataset includes 1780 frames from six individuals. We hand

6F1 score is the harmonic mean of precision and recall [27]

Table 3: The overall accuracy for detecting individual low-level events.
The rows are: facing.right (FR), facing.left (FL), lane.change

(LC), lane.weaving (LW), turn.right (TR), and turn.left (TL).

Event # of TPs # of FPs # of GT PR RC

Part 1: events detected from the driver classifier

FR 21 10 31 0.68 0.68

FL 23 6 26 0.79 0.88

Part 2: events detected from the road classifier

LC 21 1 24 0.95 0.88

LW 16 2 22 1.00 0.73

Part 3: events detected from the car classifier

TR 31 0 35 1.00 0.89

TL 22 2 25 0.92 0.88

Overall - - - 0.89 0.82

Table 4: Confusion matrix for the eye state classifying error.

# of frames
Detected

Open Closed

Actual
Open 1266 41

Closed 89 384

label eye state for each frame. Table 4 provides the confusion
matrix for the test dataset using the driver classifier. We find ac-
curacy, precision and the false positive rates are 92%, 93% and
18%, respectively. The majority of false positives are due to chal-
lenging lighting conditions (5%) and reflections on driver’s glasses
(41%). These errors represent the limitations of vision algorithms
when dealing with shadows, very bright light and reflections. How-
ever, the key use of eye states is for drowsy driver detection which
uses an accumulation of prolonged blinks and eye closed events
observed over a time window; therefore, the impact of errors in
individual frames is diminished.

Road Classification Pipeline. Table 3 reports the detection
accuracy of lane trajectory events (i.e., lane.weaving (LW), and
lane.change (LC)) for the road classification pipeline. The table
shows precision – 95% (LC) and 100% (LW) – is close to or higher
than recall – 88% (LC) and 73% (LW). We investigate the cause
of low recall for LW events and find this is due to the car being
close to the lane markers for very brief periods during lane weav-
ing – especially compared to the more controlled slower trajectory
when performing a lane change (LC). To isolate the accuracy of
lane marker detection state within the road classification pipeline
(ignoring trajectory classification) we compile a test dataset of rear-
camera images containing lane markers. This dataset contains 814
frames. For each frame we label (by hand) the position of the lane
markers. We then provide these frames as input to the road classi-
fication pipeline directly. This experiment finds that lane markers
are detected accurately in 85% of frames.

We perform a specific experiment to quantify the accuracy of
following distance estimation. First, we instrument a stationary
car with CarSafe. Next, another car is driven so it is positioned
in front of the first car. We repeat the experiment 5 times with
various distances between the two cars ranging between 5 and 35
meters. At each distance, manual measurements provide ground
truth which is compared to the CarSafe distance estimate. Figure 12
reports the results from this experiment. We find that the mean error
is 2.0 meters. We further find that following distance estimation
is not possible beyond 35 meters. This is because the size of the
front car in the image frame becomes too small and noisy for the
estimation process to function correctly.

Car Classification Pipeline. Table 3 shows the turn detection
performance of the car classification pipeline. Recognition of turn
events (i.e., turn.right (TR) and turn.left (TL)) is 100% (precision)
and 89% (recall) for TR events and 92% (precision) and 88% (re-
call) for TL events, respectively. We find all false positives (100%)
are caused when driving along curved roads. The majority of false
negative misclassifications (69%) are due to noisy GPS samples
collected when the car stops for a long time before turning; other
false negatives (31%) occur during turns that are ≤ 90

○ (i.e., shal-
low turns). Our results show many of these errors may be removed
by using existing map-matching algorithms [30] combined with the
GPS. Table 5 provides a confusion matrix for the lane trajectory
events inferred by the car classification pipeline. Mean precision
and recall are 84% and 76%, respectively. Although both preci-
sion and recall appear to perform well, this component is primarily
used to provide bind spot hints that are used to enable pre-emptive
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Figure 12: The accuracy of the estimated following distance (from 5 ∼ 35
meters). The red dotted line indicates the ground truth of fol-
lowing distance, and the blue real line indicates the estimated
following distance.

switching. For example, if the car classification pipeline detects a
change in the car trajectory, CarSafe will immediately switch to the
rear camera to verify the car trajectory inference.

5.4 Context-driven Camera Switching
In the following experiments, we perform parameter sensitivity

analysis for context-driven camera switching and compare its per-
formance to a baseline switching solution.

Methodology. Based on the same simulator described in sub-
section 5.2, we can test any possible switching behavior used dur-
ing the experiment.

Baseline Switching Scheme. We compare our adaptive context-
aware switching strategy (carsafe) to a static strategy (baseli-
ne) that gives equal time to both cameras in a simple round robing
manner, but does not adjust to the environment (e.g., blind spot
hints).

Parameter Tuning. Figure 13 shows the precision and re-
call for different parameter combinations for both carsafe and
baseline switching schemes. During this experiment we per-
form a conventional grid parameter search with intervals of 1 sec
within a parameter range of 1 to 30 seconds, for each parameter.
The simulator provides both recall and precision values. Figure 13
shows that baseline performance is clustered at the bottom left
hand side of the graph, compared to the top right hand side cluster-
ing for carsafe. In other words, across the majority of parame-
ter combinations carsafe outperforms baseline – on average
this margin is 25% (precision) and 14% (recall). By consulting
Figure 13 we find for carsafe the optimal mean precision and
recall (83% and 75%) respectively, is achieved when {Fmin, Bmin,
Fadd, Badd} are set to 4, 4, 1, and 1 seconds. This combination rep-
resents the equilibrium when balancing two competing factors: (1)
shorter switching times allow for more frequent updates from both

Table 5: Confusion matrix for detecting lane change/weaving through the
car classifier. “Lane change/weaving” class represents either lane
change or weaving trajectory while the “other” class represents all
other trajectories where the car largely remains in the same lane.
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Figure 13: The precision-recall graph of different parameter settings for
the carsafe and baseline schemes. A red cross (blue
circle) indicates the precision and recall of the baseline

(carsafe) scheme based on a particular set of parameters.

cameras, but a larger fraction of camera time is lost to the overhead
of camera switching; and (2), longer switching times miss fewer
events on average, but compromise dangerous event detection since
the information from one camera is frequently stale (out-of-date).
In comparison, we find the optimal baseline configuration is 12
seconds.

Switching Strategy Comparison. Figure 14 illustrates the F1
score when detecting each dangerous driving event (viz. DD, ID,
CLC, LW, and TG) assuming both the carsafe and baseline
schemes. For this experiment we use the optimal parameter config-
uration for both techniques, determined by our earlier experiment.
On average carsafe has a 16% higher F1 score than baseline.
One of the largest differences is when detecting CLC, which shows
carsafe provides a 33% increase over baseline.

5.5 Multi-core Computation Planner
Benchmarks

A set of experiments is conducted to estimate the average image
processing rate of CarSafe. These experiments are carried out on a
Samsung Galaxy S3 with an Android 4.2 OS.

Figure 15 presents CarSafe’s processing time for both driver- and
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Figure 14: The F1 scores for detecting dangerous driving conditions
using baseline (dark-color) and carsafe (bright-color)
schemes.



road-based events. In CarSafe, multiple threads are dispatched in
the multi-core computation planner component to boost the image
processing performance. The frame rate of CarSafe image process-
ing is boosted from 4.95 (running one thread) to 9.87 (running four
concurrent threads) fps for the driver classification pipeline, and
from 3.82 (running one thread) to 10.86 (running four concurrent
threads) fps for the road classification pipeline. The standard de-
viation of the frame processing time is 7.88 (7.71) seconds for the
driver (road) classification pipeline, which helps reduce the jitter in
the frame processing latency. The figure shows that the processing
time will not decrease when there are more than 4 threads concur-
rently processing. In order to boost the frame rate of image pro-
cessing while maintaining an overall short waiting time, CarSafe
concurrently maintains four threads within the multi-core compu-
tation planner.

6. RELATED WORK
Recognizing driving behavior (i.e., driver drowsiness, lane de-

parture, and following distance) using fixed vehicle-mounted de-
vices is an active area of research. In the case of drowsy driv-
ing, Bhowmick et al. [26] identifies driver drowsiness by detecting
eyes and classifying eye states (viz. open and closed states) us-
ing an infra-red camera. By illuminating facial landmarks the nose
and eyes are easily recognized, and by finding the eye shape the
state of the eye can be classified. Vural et al. [42] predicts sleep
episodes by monitoring facial actions (e.g., blinking, and yawn-
ing) using cameras and head movement – here the driver wears a
head-mounted accelerometer. Aly [24] presents a real-time lane
marker detector, which relies on a vehicle-mounted camera, bird’s-
eye view transformation and a gaussian filter. After transforming
vehicle-mounted camera images to a bird’s-eye view through in-
verse perspective transformation, the system filters the images via
a 2D selective-orientation gaussian filter and thresholds the filtered
images by zeroing all values below a set threshold. Finally, the sys-
tem fits lines to the thresholded images, that identify lane markers,
by using a RANSAC algorithm. Stein et al. [40] measures the fol-
lowing distance using a monocular camera mounted near the rear-
view mirror. They design a vision-based Adaptive Cruise Control
(ACC) system to determine the following distance by transforming
the measured distances, i.e., the distances between the driving and
preceding cars in the camera coordinate system, to real following
distances in the world coordinate system based on a simple pinhole
model. However, none of these examples of existing studies into
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Figure 15: The frame processing time and time variance of the driver and
road classifiers when replicating 1 ∼ 8 running threads.

driver behavior detection consider the limitations and challenges of
a smartphone-based implementation. In developing CarSafe, we
re-examine this family of techniques in light of real-world phone-
in-car scenarios and investigate how they can be adapted to run on
multi-core smartphones.

By integrating powerful sensors into top-end cars (e.g., cameras,
radar, and ultrasonic sensors), manufacturers are bringing similar
forms of driver behavior monitoring to the consumer market. These
systems [15, 23, 6] warn the driver using acoustic (e.g., playing a
voice recording [6]), tactile (e.g., seat and steering wheel vibra-
tion [23]) and visual (e.g., a blinking coffee-cup icon on the dash-
board [15]) alerts when dangerous driving conditions are detected.
Although the cost of safety technology is dropping, most safety
technologies are not available in entry-level vehicles; it will be a
decade before the vast majority of cars on the road today have these
safety features built-in. In contrast, smartphone solutions such as
CarSafe can be used in all cars (new or old) and represent a cheap
and disruptive technology. Several commercial smartphone apps
[11, 4, 13] are emerging. iOnRoad [11] and Augmented Driving [4]
for example focus on monitoring the following distance using the
back camera and LDWS [13] offers warning sounds when the ve-
hicle departs a lane marker. To the best of our knowledge, none of
these apps detect dangerous driving behavior using the front- and
rear-facing cameras – they typically are only watching conditions
on the road.

7. CONCLUSION
This paper describes the design, implementation and evaluation

of CarSafe and presents results from a small-scale deployment of
the app in the wild. The performance of the overall system looks
very promising given the real challenges of different drivers, con-
text and road conditions. Our future plans are to improve the cur-
rent prototype with the goals of advancing the UI design (which
was not a focus of this paper) in addition to gaining further im-
provements in the real-time performance of the CarSafe classifica-
tion pipelines. We also plan to release CarSafe on Google Play [2]
to get further input from the broader app user community. Finally,
we plan to develop a set of open APIs enabling full access to the
front and rear cameras and will start by studying more experimental
open source platforms, such as, Tizen [22]. Our goal is to stimulate
interest in dual camera sensing apps to encourage major platform
vendors to solve this problem.
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